Calculer La Masse Solaire Transformée Chaque Seconde en Énergie

Calculer La Masse Solaire Transformée Chaque Seconde en Énergie





Le Soleil est une étoile dans laquelle se produisent des réactions nucléaires de fusion qui le maintiennent à une température élevée. Ces réactions émettent des rayonnements électromagnétiques qui traduisent la perte d’énergie du Soleil. Pour produire autant d’énergie, le Soleil sacrifie chaque seconde une partie de sa masse.









A

L’énergie libérée par les réactions nucléaires




Le Soleil est une étoile dans laquelle se produisent des réactions nucléaires de fusion. Ces réactions le maintiennent à une température très élevée.

Il existe plusieurs réactions nucléaires aux sein du Soleil.




Au cœur du Soleil, l’une des fusions possibles concernent deux isotopes de fifty’hydrogène : le deutérium
\ce{^{2}_{1}H}
et le tritium
\ce{^{3}_{1}H}
:

\ce{^{2}_{i}H}+\ce{^{iii}_{1}H}\ce{->}\ce{^{4}_{2}He}^{*}+\ce{^{one}_{0}n}

Cette réaction produit un noyau d’hélium et libère un neutron.







Fusion des noyaux de deutérium et de tritium














Lors des fusions nucléaires (et de toutes les réactions nucléaires en général), une partie de la masse des réactifs est perdue et convertie en énergie, conformément à la relation d’Einstein.








Relation d’Einstein : 50’équivalence masse-énergie








La relation d’Einstein, appelée aussi équivalence masse-énergie, qui permet de calculer 50’énergie libérée
E_{50}
par une réaction nucléaire à partir de la perte de masse
\Delta m
est :

E_{l\left(\text{J}\correct)} = \Delta m_{\left(\text{kg}\right)} \times c_{\left(\text{m.due south}^{-1}\correct)}^{2}

Avec :

  • \Delta g, la perte de masse :
    \Delta m_{\left(\text{kg}\right)} = m_{\text{réactifs}\left(\text{kg}\right)} – m_{\text{produits} \left(\text{kg}\right)}
  • c, la vitesse de la lumière dans le vide :
    c = 3{,}00 \times 10^8\text{ m.s}^{–1}







La perte de masse étant très faible, il est nécessaire d’écrire les masses des réactifs et des produits avec une très grande précision (de l’ordre du cent millième de 10-27
kg).











À partir des masses des réactifs et des produits, il est possible de calculer l’énergie libérée par la fusion de deux noyaux.












B

La perte d’énergie par rayonnement




Comme tous les corps matériels, les étoiles et le Soleil émettent des ondes électromagnétiques et perdent donc de l’énergie par rayonnement.

Le spectre du rayonnement émis par la surface d’une étoile est modélisé par un spectre de corps noir, un corps idéal qui absorbe parfaitement toute la lumière qu’il reçoit, quelle que soit sa longueur d’onde.

Cette absorption se traduit par une agitation thermique qui provoque l’émission d’un rayonnement thermique, dit rayonnement du corps noir, et qui est lié à la température absolue de la surface du corps noir.

Popular:   Comment Calculer La Surface D Un Parallélépipède Rectangle




Température absolue








On appelle
température absolue
une mesure de la température qui prend le zéro absolu (qui est caractérisé par une agitation thermique nulle) comme origine. Elle s’exprime en kelvins (K).











La température du zéro absolu est de –273,15 °C et elle correspond aussi à 0 K. La règle de conversion entre les unités degré Celsius (°C) et kelvin (K) est :


T_{(Thou)} = T_{(°C)} + 273{,}15




Une température de 20 °C correspond à la température absolue :

T_{(\text{Chiliad})} = T_{(\text{°C})} + 273{,}15 = 20{,}00 + 273{,}15 = 293{,}15\text{ 1000}







Le spectre du rayonnement émis par la surface d’une étoile dépend seulement de la température de sa surface. La longueur d’onde
\lambda_{max}
qui stand for au maximum d’émission de rayonnement par fifty’étoile est inversement proportionnelle à la température absolue de sa surface.








Intensité lumineuse en fonction de la longueur d'onde pour plusieurs températures de surface de la source




Intensité lumineuse en fonction de la longueur d’onde pour plusieurs températures de surface de la source














Loi de Wien








La loi de Wien s’applique aux corps noirs, elle relie la longueur d’onde
\lambda_{max}
du maximum d’émission de rayonnement d’un corps à la température absolue de sa surface :

T_{\left(K\correct)} = \dfrac{2{,}898 \times 10^{–three}}{\lambda_{max \left(m\right)} }

La loi de Wien associée au spectre du rayonnement émis par le Soleil permet de déterminer sa température de surface.




Spectre du rayonnement émis par le Soleil




Spectre du rayonnement émis par le Soleil











Après lecture graphique de
\lambda_{max}
(maximum de la courbe), on peut en effet déduire la température de surface du Soleil à l’aide de la loi de Wien :

T_{\left(K\correct)} = \dfrac{ii{,}898 \times x^{–3}}{\lambda_{max \left(g\right)} }







Cela signifie que plus la température absolue de surface d’une étoile est importante, plus la longueur d’onde à laquelle elle émet son maximum de rayonnement est faible.












C

La masse solaire transformée en énergie




La masse solaire est transformée en énergie. En effet, grâce à la relation équivalence masse-énergie d’Einstein, sachant que la puissance totale rayonnée par le Soleil est de
iv \times10^{26}\text{ W}, on peut montrer que chaque seconde, environ
4 \times ten^{9}\text{ kg}
de matière solaire sont convertis en énergie.








Puisque la puissance totale rayonnée par le Soleil est
iv \times 10^{26} \text{ Westward}, l’énergie produite en une seconde est :

E_{(\text{J})} = P_{(\text{W})} \times \Delta t_{(\text{s})}



E = four \times 10^{26} \times 1



Due east = 4 \times 10^{26} \text{ J}

Popular:   La Terre Est Bleue Comme Une Orange

La masse solaire transformée est alors déterminée à l’aide de la relation d’équivalence masse-énergie d’Einstein :
E_{(\text{J})} = \Delta m_{(\text{kg})} \times c^2_{(\text{1000$\cdot$s}{–1})}

D’où :
\Delta m_{(\text{kg})} = \dfrac{E_{(\text{J})}}{c^2_{(\text{m$\cdot$south}{–1})}}

Soit :
\Delta m = \dfrac{4 \times 10^{26} }{(iii{,}00 \times ten^8)^2}


\Delta m =4 \times x^{nine} \text{ kg}












II

La réception de l’énergie solaire sur Terre




Fifty’essentiel de l’énergie sur Terre lui provient des rayonnements émis par le Soleil. Leur puissance varie en fonction de paramètres de temps et d’espace.











La Terre reçoit une partie du rayonnement émis par le Soleil. C’est l’essentiel de son énergie.








Puissance solaire (ou radiative)








La puissance solaire (ou radiative)
sur Terre est l’énergie du rayonnement solaire qui est reçue sur une surface chaque seconde. Elle s’exprime en watts par mètre carré (W/thousand2).











La puissance solaire reçue sur Terre par unité de surface est inversement proportionnelle à l’aire de la surface éclairée.








Si la surface qui reçoit le rayonnement solaire est doublée, la puissance solaire reçue sur un mètre carré est divisée par deux.








Puissance solaire reçue par unité de surface




Puissance solaire reçue par unité de surface

















Puissance solaire (ou radiative) par unité de surface








La puissance solaire (ou radiative) par unité de surface
est l’énergie du rayonnement solaire qui est reçue sur une surface de 1 k2
chaque seconde. Elle southward’exprime en watts par mètre carré (W·m–2).








La puissance solaire maximale à la surface de la Terre est d’environ 1 000 Due west·m–2
pour une surface perpendiculaire aux rayons.














La puissance solaire par unité de surface reçue sur Terre dépend de fifty’angle d’incidence, entre la droite normale à la surface et la direction du Soleil : plus 50’angle d’incidence est faible, plus la surface qui reçoit le rayonnement solaire est faible et plus la puissance solaire reçue est importante.








Angle d'incidence




Angle d’incidence





















B

La variabilité de la répartition de 50’énergie solaire




Le rayonnement solaire reçu par la Terre varie en fonction de plusieurs paramètres.








La puissance solaire reçue par unité de surface dépend :

  • de l’heure
    (variation diurne), car la position du Soleil varie dans le ciel ;
  • du moment de l’année
    (variation saisonnière) : l’axe de révolution de la Terre sur elle-même étant incliné par rapport au plan dans laquelle elle tourne autour du Soleil (plan de l’écliptique), les hémisphères north’ont pas la même inclinaison vers le Soleil au même moment de l’année ;
  • de la latitude
    (zonation climatique) : la surface qui reçoit le rayonnement augmente avec la latitude.




La puissance solaire reçue par unité de surface est plus importante à midi (12 h 00 heure solaire) qu’à un autre moment de la journée.








Variation de la surface avec l'angle d'incidence




Variation de la surface avec l’angle d’incidence














Variation de la surface recevant le rayonnement solaire en fonction en hiver et en été




Variation de la surface recevant le rayonnement solaire en fonction en hiver et en été

















Quand un hémisphère est incliné vers le Soleil, le Soleil est plus haut dans le ciel et le rayonnement solaire est concentré sur une plus faible surface : il fait donc plus chaud, c’est 50’été.

Quand un hémisphère est incliné dans la direction opposée du Soleil, le Soleil est plus bas dans le ciel, les rayons du Soleil sont plus étalés et moins concentrés, il fait donc moins chaud : c’est l’hiver.




La surface qui reçoit le rayonnement est minimale à l’équateur et augmente avec la latitude. La puissance solaire reçue par unités de surface diminue donc avec la latitude, elle est maximale à fifty’équateur.








Variation de la surface recevant le rayonnement solaire en fonction de la latitude




Variation de la surface recevant le rayonnement solaire en fonction de la latitude














La variation de la puissance solaire reçue en fonction de la latitude est à l’origine des différences de climat observées à la surface de la Terre.








Moyenne de la puissance solaire reçue en fonction de la latitude




Moyenne de la puissance solaire reçue en fonction de la latitude
















Calculer La Masse Solaire Transformée Chaque Seconde en Énergie

Source: https://www.kartable.fr/ressources/enseignement-scientifique/cours/le-rayonnement-solaire/51271

Ce site utilise des cookies pour améliorer la convivialité. Vous acceptez en utilisant le site Web plus loin.

Politique de confidentialité des cookies